Simulated Microgravity Modulates Differentiation Processes of Embryonic Stem Cells.
نویسندگان
چکیده
BACKGROUND/AIMS Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of altered gravity on the embryonic development processes we established an in vitro methodology allowing differentiation of mouse embryonic stem cells (mESCs) under simulated microgravity within a fast-rotating clinostat (clinorotation) and capture of microarray-based gene signatures. METHODS The differentiating mESCs were cultured in a 2D pipette clinostat. The microarray and bioinformatics tools were used to capture genes that are deregulated by simulated microgravity and their impact on developmental biological processes. RESULTS The data analysis demonstrated that differentiation of mESCs in pipettes for 3 days resultet to early germ layer differentiation and then to the different somatic cell types after further 7 days of differentiation in the Petri dishes. Clinorotation influences differentiation as well as non-differentiation related biological processes like cytoskeleton related 19 genes were modulated. Notably, simulated microgravity deregulated genes Cyr61, Thbs1, Parva, Dhrs3, Jun, Tpm1, Fzd2 and Dll1 are involved in heart morphogenesis as an acute response on day 3. If the stem cells were further cultivated under normal gravity conditions (1 g) after clinorotation, the expression of cardiomyocytes specific genes such as Tnnt2, Rbp4, Tnni1, Csrp3, Nppb and Mybpc3 on day 10 was inhibited. This correlated well with a decreasing beating activity of the 10-days old embryoid bodies (EBs). Finally, we captured Gadd45g, Jun, Thbs1, Cyr61and Dll1 genes whose expressions were modulated by simulated microgravity and by real microgravity in various reported studies. Simulated microgravity also deregulated genes belonging to the MAP kinase and focal dhesion signal transduction pathways. CONCLUSION One of the most prominent biological processes affected by simulated microgravity was the process of cardiomyogenesis. The most significant simulated microgravity-affected genes, signal transduction pathways, and biological processes which are relevant for mESCs differentiation have been identified and discussed below.
منابع مشابه
Expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition
Objective(s): Studies have confirmed that microgravity, as a mechanical factor, influences both differentiation and function of mesenchymal stem cells. Here we investigated the effects of simulated microgravity on neural differentiation of human adipose-derived stem cells (ADSCs). Materials and Methods:We have used a fast rotating clinostat (clinorotation) to simulate microgravity condition. R...
متن کاملEffect of Simulated Microgravity Conditions on Differentiation of Adipose Derived Stem Cells towards Fibroblasts Using Connective Tissue Growth Factor
Background: Mesenchymal stem cells (MSCs) are multipotent cells able to differentiating into a variety of mesenchymal tissues including osteoblasts, adipocytes and several other tissues. Objectives: Differentiation of MSCs into fibroblast cells in vitro is an attractive strategy to achieve fibroblast cell and use them for purposes such as regeneration medicine. The goal of this s...
متن کاملSimulated Microgravity Condition Alters the Gene Expression of some ECM and Adhesive Molecules in Adipose-Derived Stem Cells
Adipose-derived stem cells (ADSCs) are widely used for tissue engineering and regenerative medicine. The beneficial effects of ADSCs on wound healing have already been reported. Remodeling of extracellular matrix (ECM) is the most important physiological event during the wound healing. ECM is sensitive to mechanical stresses and the expression of its components can be therefore influenced. The ...
متن کاملNuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملMicrogravity Reduces the Differentiation and Regenerative Potential of Embryonic Stem Cells.
Mechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including inhibition of regenerative stem cell differentiation. To address this hypothesis, we investigated the effects of microgravity on early lineage commitment of mouse embryonic stem cells (mESCs) using the embryoid body (EB) model of tissue differentiation. We found that exposure to microg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 38 4 شماره
صفحات -
تاریخ انتشار 2016